VS conceived the study, participated in its design and wrote the

VS conceived the study, participated in its design and wrote the manuscript. All authors read and approved the final manuscript.”
“Background The Coal Oil Point seep area (COP), located in the Santa Barbara Channel, California, is one

of the most active seep areas in the world [1]. Seepage of the greenhouse gas methane and other hydrocarbons has occurred in this area for over 500 000 years [2]. The methane emitted from the COP is mainly of thermogenic origin and the daily emission has been estimated to be at least 40 metric tons [1, 3]. At a global scale, the oceans only make up about 2% of the global methane emission budget [4]. This low level is explained by prokaryotic oxidation of methane in marine sediments and bedrocks before it reaches the water column [5]. The oxygen Trichostatin A solubility dmso penetration level in marine sediments is shallow, so most of the methane check details oxidation takes place at anaerobic conditions. Anaerobic oxidation of methane (AOM) is assumed to be a coupling of reversed methanogenesis and sulphate reduction. This process is likely performed by the yet uncultured anaerobic methanotrophic archaea (ANME) in syntrophy with sulphate reducing bacteria

(SRB). Based on phylogeny, ANME can be divided into three clades: ANME-1, ANME-2 and ANME-3 [6–9]. ANME-2 and ANME-3 are affiliated to the Methanosarcinales, while ANME-1 is only distantly related to the Methanosarcinales and Methanomicrobiales [7–9]. Both ANME-1 and ANME-2 are associated with sulphur reducing deltaproteobacteria of the Desulfosarcina/Desulfococcus-branch Amrubicin [7, 9, 10]. ANME-3 is mainly associated with SRB strains closely related to Desulfobulbus [6]. The reversed methanogenesis

model for AOM has gained support by a metagenomic study on ANME at Eel River [11] and sequencing of an ANME-1 draft genome [12]. In these studies sequence homologues of all enzymes needed for CO2-based methanogenesis with exception of N5, N10-methylene-tetrahydromethanopterin reductase (mer) were identified. Methyl-coenzyme M reductase (mcrA) is assumed to catalyze the first step of AOM and the last step of methanogenesis, and is therefore a marker gene for both processes. Similarly, dissimilatory sulphite reductase (dsrAB) is often used as a marker gene for SRB [13]. When oxygen is present, aerobic methanotrophs are active in methane oxidation. Known aerobic methanotrophs include representatives of Gammaproteobacteria, Alphaproteobacteria and Verrucomicrobia [14–18]. These organisms convert methane to methanol using the enzyme methane monooxygenase [17]. The particulate, membrane bound version of methane monooxygenase (pmoA), found in all aerobic methanotrophs (with exception of Methanocella), is used as a marker gene for aerobic oxidation of methane [19]. The methanol formed is converted to formaldehyde, which is assimilated by one of two known MI-503 chemical structure pathways.

Comments are closed.