Consequently, the well-integrated ZnO NRAs on the CT substrate co

Consequently, the well-integrated ZnO NRAs on the CT substrate could be fabricated by the ED process with the aid of ultrasonic agitation under a proper external cathodic voltage. Figure 6 Room-temperature PL spectra. Bare CT substrate and the synthesized ZnO on the seed-coated CT substrate at different external cathodic voltages from −1.6 to −2.8 V for 1 h under ultrasonic agitation. The inset shows the PL peak intensity and FWHM of the synthesized ZnO as a function of external

cathodic voltage. Conclusions The ZnO NRAs were successfully integrated on the CT substrate (i.e., woven by Ni/PET fibers) by the ED process using the seed layer and ultrasonic agitation under a proper external cathodic voltage of −2 V for 1 h. The sizes/heights of ZnO NRAs check details were Sirolimus cost distributed to be approximately 65 to 80 nm/600 to 800 nm, and they could be clearly coated over the whole surface of the CT substrate with the seed layer and ultrasonic agitation. In a comparative investigation, it is clearly observed that the seed layer and ultrasonic agitation played key roles in providing a uniform organization of the ZnO NRAs with good nuclei sites as well as removing the adhesive ZnO microrods. Additionally, the well-integrated ZnO NRAs exhibited a narrow and strong PL NBE emission with good crystallinity.

This optimal ED process for the well-integrated ZnO NRAs on CT substrates can be an essential growth technique for producing flexible and wearable functional materials in ZnO-based optoelectronic and electrochemical devices. Acknowledgments This research was supported by the basic science research program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (no. 2011-0026393). References 1. Li C, Fang G, Liu N, Li J, Liao L, Su F, Li G, Wu X, Zhao X: Structural, photoluminescence, and field emission properties of vertically well-aligned ZnO nanorod arrays. J Phys Chem C 2007, 111:12566.CrossRef 2. Lai E, Kim W, Yang P: Vertical nanowire array-based light emitting diodes. Nano Res 2008, 1:123.CrossRef 3. Wang ZL,

Song J: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312:242.CrossRef 4. Xu S, Qin Y, Xu C, Wei Y, Yang R, Wang ZL: Self-powered nanowire devices. Nat Nanotech 2010, 5:366.CrossRef 5. DOK2 Zhang Q, Dandeneau CS, Zhou X, Cao G: ZnO nanostructures for dye-sensitized solar cells. Adv Mater 2009, 21:4087.CrossRef 6. Park JY, Song DE, Kim SS: An approach to fabricating chemical sensors based on ZnO nanorod arrays. Nanotechnol 2008, 19:105503.CrossRef 7. Lu CY, Chang SJ, Chang SP, Lee CT, Kuo CF, Chang HM: Ultraviolet photodetectors with ZnO nanowires prepared on ZnO:Ga/glass templates. Appl Phys Lett 2006, 89:153101.CrossRef 8. Wang ZL: Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter 2004, 16:R829.CrossRef 9. Djurišić AB, Leung YH: Optical properties of ZnO nanostructures.

Comments are closed.